
Resource Formation Service

Template Reference

Issue 01

Date 2025-02-10

HUAWEI TECHNOLOGIES CO., LTD.



 
 
Copyright © Huawei Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.
 
Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.
 
Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.
  
 
 
 
 
 

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com


 
 

Security Declaration
 
Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory
 
 
 
 

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory


Contents

1 Templates.................................................................................................................................. 1

2 Syntax.........................................................................................................................................2
2.1 Basic Syntax...............................................................................................................................................................................2
2.2 Style Conventions.................................................................................................................................................................... 4
2.3 Expressions.................................................................................................................................................................................5
2.4 Common Functions.................................................................................................................................................................7

3 Configuration Guide............................................................................................................. 13
3.1 Provider.................................................................................................................................................................................... 13
3.2 Resources................................................................................................................................................................................. 13
3.3 Data Source............................................................................................................................................................................ 14
3.4 Variables.................................................................................................................................................................................. 14
3.4.1 Input Variables................................................................................................................................................................... 14
3.4.2 Output Variables................................................................................................................................................................17
3.4.3 Local Variables................................................................................................................................................................... 18
3.5 Metadata................................................................................................................................................................................. 18
3.5.1 Instruction............................................................................................................................................................................ 18
3.5.2 depends_on..........................................................................................................................................................................19
3.5.3 count...................................................................................................................................................................................... 19
3.5.4 for_each................................................................................................................................................................................ 20
3.5.5 provider................................................................................................................................................................................. 20
3.5.6 lifecycle................................................................................................................................................................................. 21

4 Template Constraints and Limitations............................................................................. 23

Resource Formation Service
Template Reference Contents

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. iii



1 Templates

RFS consists of templates and stacks.

A stack is a collection of Huawei Cloud resources and created by users on RFS. A
template is a script used to create and update stacks.

Resource Formation Service
Template Reference 1 Templates

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 1



2 Syntax

2.1 Basic Syntax
The RFS configuration language is easy, highly readable, and compatible with the
HCL and JSON syntax. This section describes the basic syntax and common
functions of the HCL.

The RFS configuration language consists of arguments, blocks, expressions, and
functions.

Arguments
Use an equal sign (=) to assign a value or expression to a particular name, which
can contain letters, digits, underscores (_), and hyphens (-), but cannot start with
a digit. For example:

image_id = "ad091b52-742f-469e-8f3c-fd81cadf0743"

Blocks
Aggregate multiple arguments and can contain another blocks. A block consists of
type, label, and body. The format is as follows:
resource "myinstance" {
   name   = "myinstance"
    ......
    network {
        uuid = "55534eaa-533a-419d-9b40-ec427ea7195a"
    }
}

Before using a block, you must declare its type (resource and network in this
example), where resource is the top-level block type and network is the nested
block type. The top-level block type keywords supported by the HCL include
provider, resource, data, variable, output, module, and locals.

Block labels are defined after the block type, and the number of block labels is
determined by the block type. In the example, the resource block type expects :
myinstance. The nested network type does not have block labels. The block body
is defined at the last and delimited by the { and } characters. Other types can be
nested in the block body to implement different layered structures.

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 2



Argument Types
The HCL supports the following argument types:

Basic types

● string: consists of one or more Unicode characters, for example, hello.
● number: can be an integer or a floating point number.
● bool: can only be true or false.

The HCL can automatically convert the number and bool types to the string type
based on the argument type. If a string can be represented as a value of the
number or bool type, it can also be converted to the other two types. Arguments
of the three types can be directly assigned values. For example:

disk_type = "SSD"
disk_size = 40
enable    = true

# Strings can be of the number and bool types.
disk_size = "40"
enable    = "true"

Set types

● map(...): a set of data elements combined using key-value pairs. The key is of
the string type, while the value can be of the string, number, or bool type.
The values of all elements must be of the same type.

● list(...): a set of data elements of the same type. The elements can be of the
basic type or block type. The list index starts from 0.

● set(...): similar to the list type. Elements in a set are unique and do not have
any auxiliary identifier or sequence.

The map type is delimited in { and } and has flexible types. Key-value pairs can be
connected using equal signs (=) or colons (:). If a key does not start with a digit,
double quotation marks (") are not required. For multi-line mapping, key-value
pairs can be separated by newline characters or commas (,). You are advised to
use equal signs (=) to connect key-value pairs and separate them with newline
characters. For example:
# Recommended format
tags = {
  foo = "bar"
  key = "value"
}

# Other formats
tags = {"foo" = "bar", "key" = "value"}
tags = {"foo" : "bar", "key" : "value"}
tags = {foo = "bar", key = "value"}
tags = {foo : "bar", key : "value"}
tags = {
  foo : "bar"
  key : "value"
}

The list type and set type are represented in the same way. The list/set whose
elements are of the basic type is delimited using [ and ], and the list/set whose
elements are of the block type is represented in the form of repeated blocks. For
example:

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 3



# List whose elements are of the basic type
security_groups = ["default", "internal"]

# List whose elements are of the block type
network {
  uuid = "55534eaa-533a-419d-9b40-ec427ea7195a"
}
network {
  uuid = "ad091b52-742f-469e-8f3c-fd81cadf0743"
}

Special types

● null: If a parameter is set to null, the parameter has no specified value. The
HCL automatically ignores the parameter and uses the default value. Null is
common in conditional expressions, for example, var.test==""? null: var.test,
indicating that when the value of var.test is "", it is ignored.

Other Syntax
● A single-line comment starts with # or //.
● /* and */ are start and end delimiters for a comment that might span over

multiple lines. Nested block comments are not supported.
● Terraform configuration files are UTF-8 encoded. Terraform accepts non-ASCII

characters in identifiers, comments, and string values.
● A multi-line string starts with <<EOF, contains the string content in the

middle, and ends with EOF. EOF can also be replaced with other characters.
For example:
  ...
  website {
    ...
    routing_rules = <<EOF
[{
    "Condition": {
        "KeyPrefixEquals": "docs/"
    },
    "Redirect": {
        "ReplaceKeyPrefixWith": "documents/"
    }
}]
EOF
  }
}

2.2 Style Conventions

Style Conventions
The HCL has some idiomatic style conventions for consistency between files and
modules written by different teams. The conventions are recommended for users
to follow. They are as follows:

● Indent two spaces for each nesting level.
● When multiple arguments with single-line values appear on consecutive lines

at the same nesting level, align their equals signs (=).
name            = "myinstance"
security_groups = ["default", "internal"]

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 4



● Use empty lines to separate logical groups of arguments within a block.
● When both arguments and blocks appear together inside a block body, place

all of the arguments together at the top and then place nested blocks below
them. Use one blank line to separate the arguments from the blocks.

● List meta-arguments at the top of the block body and separate them from
other arguments with one blank line. Place meta-argument blocks at the end
of the block body and separate them from other blocks with one blank line.
  count = 1

  bucket = "bucket_demo"
  acl    = "public-read"

  tags = {
    foo = "bar"
    env = "test"
  }

  lifecycle {
    create_before_destroy = true
  }
}

● Top-level blocks should always be separated from one another by one blank
line.

● Nested blocks of the same type should be grouped together, while those of
different types should be separated by blank lines.

Reference

https://www.terraform.io/docs/configuration/style.html

2.3 Expressions
Expressions refer to or compute values within a configuration. The simplest
expressions are just literal values, like hello world or 5. Terraform allows multiple
expressions such as operators, conditional expressions, and built-in functions.

You can experience and test expressions and built-in functions using the Terraform
expression console, by running the terraform console command.

Operators

Operators perform specific mathematical or logical operations. Terraform supports
the following types of operators:

● Arithmetic operators: expect number values and produce number values as
results, including +, - (subtraction), *, /, %, and - (multiplication by -1).

● Equality operators: both take two values of any type and produce bool values
as results, including == and ! =.

● Comparison operators: expect number values and produce bool values as
results, including >, >=, <, and <=.

● Logical operators: expect bool values and produce bool values as results,
including ||, &&, and !.

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 5

https://www.terraform.io/docs/configuration/style.html


When multiple operators are used together in an expression, they are evaluated in
the following order of operations:

1. !, - (multiplication by -1)
2. *, /, %
3. +, - (subtraction)
4. >, >=, <, <=
5. ==, !=
6. &&
7. ||

Conditional Expressions

A conditional expression uses the value of a bool expression to select one of two
values. The syntax is as follows:

condition ? true_value : false_value

This statement indicates that if condition is true, the result is true_value.
Otherwise, the result is false_value. The result of a conditional expression can be
of any type, but the types of true_value and false_value must be the same. A
common use of conditional expressions is to define defaults to replace invalid
values:

var.a != "" ? var.a : "default-a"

This statement indicates that if var.a is not empty, the actual value of var.a is
returned. Otherwise, the result is default-a.

For Expressions

A for expression creates a set type by traversing and transforming each element in
another set type (map, list, or set). The type of brackets around the for expression
decide what type of result it produces.

● Using [ and ] will generate a list.
● Using { and } will generate a map or object.

Assume that the value of mylist is ["AA", "BBB", "CCCC"]. You can use the for
expression to convert each string element in mylist to lowercase and output
another list.

> [for str in var.mylist : lower(str)]
[
  "aa",    
  "bbb",
  "cccc", 
]

You can also output a map, which is determined by =>:

> {for str in var.mylist : str => lower(str)}
{
  "AA" = "aa"    
  "BBB" = "bbb"
  "CCCC" = "cccc" 
}

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 6



The for expression can also convert a map. Assume that the value of mymap is
{element1="aaa", element2="bbb", element3="ccc"}. You can convert each
value in the map to uppercase.

> {for key, value in var.mymap : key => upper(value)}
{
  "element1 = "AAA"    
  "element2 = "BBB"
  "element3 = "CCC" 
}

In addition, the for expression can use the if clause to filter elements:

> [for str in var.list : upper(str) if length(str) >= 3] 
[
  "bbb",    
  "cccc",
]

Reference

https://www.terraform.io/docs/configuration/expressions.html

2.4 Common Functions
The HCL supports various built-in functions you can call by function name for
processing strings, calculating values, encrypting values, and converting types. The
syntax is as follows:

<Function name>(<Argument 1>, <Argument 2>...)

This section summarizes common functions in HCL and uses examples to describe
their usage. For details about the complete list of supported functions, see
Terraform Functions.

String Functions

Table 2-1 String functions

Name Description Example Value Output

format Produces a string by
formatting a number
of other values
according to a
specification string.

format("Hello,
%s!", "cloud")

Hello, cloud!

lower Converts all letters in
the given string to
lowercase.

lower("HELLO") hello

upper Converts all letters in
the given string to
uppercase.

upper("hello") HELLO

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 7

https://www.terraform.io/docs/configuration/expressions.html
https://www.terraform.io/docs/configuration/functions.html


Name Description Example Value Output

join Produces a string by
concatenating together
all elements of a given
list of strings with the
given delimiter.

join(", ", ["One",
"Two", "Three"])

One, Two, Three

split Produces a list by
dividing a given string
at all occurrences of a
given separator.

split(", ", "One,
Two, Three")

["One", "Two",
"Three"]

substr Extracts a substring
from a given string by
offset and length.

substr("hello
world!", 1, 4)

ello

replace Searches a given string
for another given
substring, and replaces
each occurrence with a
given replacement
string.

replace("hello,
cloud!", "h", "H")

Hello, cloud!

 

Numeric Functions

Table 2-2 Numeric functions

Name Description Example Value Output

abs Returns the absolute
value of the given
number.

abs(-12.4) 12.4

max Takes one or more
numbers and returns
the greatest number
from the set.

max(12, 54, 6)
max([12, 54, 6]...)

54
54

min Takes one or more
numbers and returns
the smallest number
from the set.

min(12, 54, 6)
min([12, 54, 6]...)

6
6

log Returns the logarithm
of a given number in a
given base.

log(16, 2) 4

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 8



Name Description Example Value Output

power Calculates an
exponent, by raising its
first argument to the
power of the second
argument.

power(3, 2) 9

 

Collection Functions

Table 2-3 Collection functions

Name Description Example Value Output

element Retrieves a single
element from a list by
an index.

element(["One",
"Two", "Three"], 1)

Two

index Finds the element
index for a given value
in a list. If the given
value is not present in
the list, an error is
reported.

index(["a", "b",
"c"], "b")

1

lookup Retrieves the value of
a single element from
a map, given its key. If
the given key does not
exist, the given default
value is returned
instead.

lookup({IT="A",
CT="B"}, "IT", "G")
lookup({IT="A",
CT="B"}, "IE", "G")

A
G

flatten Replaces any elements
that are lists with a
flattened sequence of
the list contents.

flatten([["a", "b"],
[], ["c"]])

["a", "b", "c"]

keys Returns a list
containing the keys
from a map.

keys({a=1, b=2,
c=3})

["a", "b", "c"]

length Determines the length
of a given list, map, or
string.

length(["One",
"Two", "Three"])
length({IT="A",
CT="B"})
length("Hello,
cloud!")

3
2
13

 

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 9



Type Conversion Functions

Table 2-4 Type conversion functions

Name Description Example Value Output

toset Converts a list value to
a set value.

toset(["One",
"Two", "One"])

["One", "Two"]

tolist Converts a set value to
a list value.

toset(["One",
"Two", "Three"])

["One", "Two",
"Three"]

tonumber Converts a string value
to a number value.

tonumber("33") 33

tostring Converts a number
value to a string value.

tostring(33) "33"

 

Encoding Functions

Table 2-5 Encoding functions

Name Description Example Value Output

base64en
code

Encodes a UTF-8
string using Base64.

base64encode("Hell
o, cloud!")

SGVsbG8sIGNsb3VkI
Q==

base64de
code

Decodes a Base64-
encoded string to its
original UTF-8
string. (If the bytes
after Base64
decoding are not
valid UTF-8, an
error is reported.)

base64decode("SGVs
bG8sIGNsb3VkIQ=="
)

Hello, cloud!

base64gzi
p

Compresses a UTF-8
string with gzip and
then encodes the
result using Base64.

base64gzip("Hello,
cloud!")

H4sIAAAAAAAA//
JIzcnJ11FIzskvTVEEAA
AA//8BAAD//
wbrhYUNAAAA

 

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 10



Hash and Crypto Functions

Table 2-6 Hash and crypto functions

Name Description Example Value Output

sha256 Computes the
SHA256 hash
(hexadecimal)
of a given string.

sha256("Hello,
cloud!")

0ad167d1e3ac8e9f4e4f7ba8
3e92d0e3838177e95985863
1c770caaed8cc5e3a

sha512 Computes the
SHA512 hash
(hexadecimal)
of a given string.

sha512("Hello,
cloud!")

6eb6ed9fc4edffaf90e742e7
697f6cc7d8548e98aa4d5aa
74982e5cdf78359e84a3ae9f
226313b2dec765bf1ea4c83
922dbfe4a61636d585da44ff
bd7e900f56

base64sh
a256

Computes the
SHA256 hash of
a given string
and encodes it
using Base64.

base64sha256("H
ello, cloud!")

CtFn0eOsjp9OT3uoPpLQ44
OBd+lZhYYxx3DKrtjMXjo=

base64sh
a512

Computes the
SHA512 hash of
a given string
and encodes it
using Base64.

base64sha512("H
ello, cloud!")

brbtn8Tt/
6+Q50LnaX9sx9hUjpiqTVqn
SYLlzfeDWehKOunyJjE7Lex2
W/HqTIOSLb/kphY21YXaRP
+9fpAPVg==

md5 Computes the
MD5 hash of a
given string.

md5("hello
world")

5eb63bbbe01eeed093cb22b
b8f5acdc3

 

NO TE

The output of base64sha512("Hello, cloud!") is not equal to that of
base64encode(sha512("Hello, cloud!")), because the hexadecimal output of sha512 is
Unicode-encoded in Terraform, not UTF-8.

Filesystem Functions

Table 2-7 Filesystem functions

Name Description Example Value Output

abspath Converts a string
containing a
filesystem path to
an absolute path.

abspath("./hello.txt") /home/demo/test/
terraform/hello.txt

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 11



Name Description Example Value Output

dirname Removes the last
portion from a
string containing a
filesystem path.

dirname("foo/bar/
baz.txt")

foo/bar

basenam
e

Removes all except
the last portion
from a string
containing a
filesystem path.

basename("foo/bar/
baz.txt")

baz.txt

file Reads the contents
of a file at the given
path and returns
them as a string.

file("./hello.txt") Hello, cloud!

filebase64 Reads the contents
of a file at the given
path and returns
them as a Base64-
encoded string.

filebase64("./
hello.txt")

SGVsbG8sIGNsb3VkI
Q==

Resource Formation Service
Template Reference 2 Syntax

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 12



3 Configuration Guide

3.1 Provider
Provider

The Terraform configuration file ends with .tf or .tf.json and consists of providers,
resources, data sources, and variables.

Each provider represents a service provider. Terraform interacts with providers
through plug-ins. A service provider is declared using the keyword provider. For
details about the provider configuration parameters, see .

When you run the terraform init command, the plug-in required is downloaded.
By default, the plug-in of the latest version is downloaded from the official
Terraform registry. For Terraform of versions later than 0.13, you can use
required_providers to specify the registry source and version of a provider.

3.2 Resources
Resources are the most important element in the Terraform language and are
declared using the keyword resource. Each cloud service supported by the provider
corresponds to one or more resources. For example, indicates ECS, and indicates
VPC.

Resource Reference
You can use an expression to reference a resource attribute in the format of
<Resource type>.<Name>.<Attribute>. Assume that a
huaweicloud_compute_instance resource named myinstance has been created.
The following is an example:

# Instance ID
> huaweicloud_compute_instance.myinstance.id
55534eaa-533a-419d-9b40-ec427ea7195a

# Instance security group
> huaweicloud_compute_instance.myinstance.security_groups
["default", "internet"]

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 13



# IP address of the first NIC of the instance
> huaweicloud_compute_instance.myinstance.network[0].fixed_ip_v4
192.168.0.245

# IP addresses of all NICs of the instance
huaweicloud_compute_instance.myinstance.network[*].fixed_ip_v4
["192.168.0.24", "192.168.10.24"]

# Value of the tag key
> huaweicloud_compute_instance.myinstance.tags["key"]
value

3.3 Data Source
Data Source

A data source can be considered as a special resource and is declared using the
keyword data. A data source is used to query the attributes and information of
existing resources. For example, you can query the image ID and other attributes
based on the image name of .

After an image is found, other resources can reference the attributes of the image
to use it. The reference format is data.<Data type>.<Name>.<Attribute>.

3.4 Variables

3.4.1 Input Variables
Input variables are like arguments for a module. They are declared using the
keyword variable. By defining input variables, you can flexibly modify the
configuration without altering the source code of the module. You can use default
values, CLI options, or environment variables to set the input variables' values.

Defining Input Variables

By convention, input variables are defined in a file named variables.tf. The input
variable is declared using the keyword variable:

variable "iamge_id" {
  type        = string
  description = "image id of Ubuntu 1804"
}

variable "availability_zone_name" {
  type    = string
  default = 
}

The label after the variable keyword is the name of the input variable, which
must be unique among all variables in the same module. The name of a variable
can be any valid identifier other than a reserved keyword. The reserved keywords
include:
source    version    providers    count    for_each    lifecycle    depends_on    locals

A variable block contains the following arguments:

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 14



● type: specifies the type of a variable. The default value is string.
● description: describes the usage of a variable.
● default: specifies the default value of a variable. A variable with a default

value can be regarded as an optional variable.
● validation block: specifies the customized validation rules of a variable.

If no variable type is specified, the default value string is used. You are advised to
explicitly specify variable types; they can serve as helpful reminders for users of
the module, and they allow Terraform to return a helpful error message if the
wrong type is used. Terraform input variables support the following types:

● Basic types: string, number, and bool
● Compound types: list(<TYPE>), set(<TYPE>), map(<TYPE>)

The following example defines a variable of the compound type:

variable "availability_zone_names" {
  type    = list(string)
  default = []
}

variable "docker_ports" {
  type = list(object({
    internal = number
    external = number
    protocol = string
  }))
  default = [{
    internal = 8300
    external = 8300
    protocol = "tcp"
  }]
}

Custom Validation Rules
You can use the validation nested block to specify custom validation rules for an
input variable. This feature is supported in Terraform 0.13.0 and later versions.
Example:

variable "iam_user_password" {
    type        = string
    description = "The password for iam user to log in."

    validation {
      condition     = length(var.iam_user_password)>=8
      error_message = "The password is too short."
    }
}

The condition argument is a Boolean expression. You can use a can function to
check whether an error will be caused by the expression. Example:

variable "iam_user_name" {
    type        = string
    description = "This name is used for iam user to log in."

    validation {
      # regex(...) If the variable fails to match the following condition, an error is returned.
      condition     = can(regex("([a-zA-Z])", var.iam_user_name))
      error_message = "Incorrect user name. Please check whether it contains upper and lower case letters."
    }
}

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 15



If the result of condition is false, Terraform generates an error message that
contains the character string defined by error_message. The value of
error_message must include at least a complete sentence that starts with an
uppercase letter and ends with a period (.) or question mark (?).

Referencing Input Variables
An input variable can be accessed as var.<Variable name> and only in the module
that declares it.

# variables.tf
variable "vpc_cidr" {
  type        = string
  description = "the CIDR of VPC"
}

# main.tf

Setting Variables
You can set input variables in either of the following ways:

● With the -var command line option.
● In variable definitions (.tfvars) files, either specified on the command line or

automatically loaded.
● As environment variables.

Variable Definitions (.tfvars) Files
If many variables are used in the configuration, you are advised to set their values
in a variable definitions file, and then use the -var-file option to specify that file.

terraform apply -var-file="testing.tfvars"

A variable definitions (.tfvars) file uses the same basic syntax as the configuration
files, but consists only of variable name assignments:

vpc_name = "my_vpc"
vpc_cidr = "192.168.0.0/16"
availability_zone_names = [
]

Terraform also automatically loads variable definitions files if they are present:

● Files named exactly terraform.tfvars or terraform.tfvars.json
● Any files with names ending in .auto.tfvars or .auto.tfvars.json

Files whose names end with .json are parsed instead as JSON objects.

{
    "vpc_name": "my_vpc"
}

Variable Definition Precedence
The above mechanisms for setting variables can be used together in any
combination. For variables of the compound type, you are advised to use the

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 16



variable definitions file to improve readability and avoid problems caused by
escape. If you assign multiple values to the same variable, Terraform uses the last
value it finds, overriding any previous values. Terraform loads variables in the
following order, with later sources taking precedence over earlier ones:

1. Environment variables
2. terraform.tfvars or terraform.tfvars.json file
3. *.auto.tfvars or *.auto.tfvars.json file
4. -var and -var-file options in the command line

Note that the same variable cannot be assigned multiple values within a single
source.

For more information about variables, see Input Variables in the Terraform
documentation.

3.4.2 Output Variables
Output variables are like return values for a module. They are declared using the
keyword output. Output variables can expose certain information. They can be
used by a root module to output certain values after running the terraform
apply/output command, or by a child module to expose a subset of its resource
attributes to a parent module.

Declaring Output Variables

By convention, output variables are defined in a file named variables.tf. Output
variables are declared using the keyword output.

output "ecs_address" {
  description = "The private IP address of my ECS"
}

The label immediately after the output keyword is the name, which must be a
valid identifier. The output block contains the following arguments:

● value (mandatory): value of the output variable. Any valid expression is
allowed as an output value.

● description: describes the usage of an output variable.
output "vpc_id" {
  description = "Check out the VPC ID"
}

● sensitive: marks output variables as sensitive and hides the output variable
values on the CLI.
output "vpc_id" {
  description = "Check out the VPC ID"
  sensitive   = true
}

$ terraform output
vpc_id = <sensitive>

Note: Output variables marked as sensitive are automatically hidden during
output, but their output values can still display in the following ways:
– The values of output variables are recorded in the state file and are

visible to anyone who can access the file.

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 17

https://www.terraform.io/docs/configuration/variables.html


– The sensitive output variable values in a child module can be invoked by
its parent module and displayed on the CLI after being referenced by the
related outputs and resources of the parent module.

● depends_on: specifies the dependency of an output variable. Since output
variables are only a means of exporting data, you do not need to set the
dependencies between output variables and other resources or data.

3.4.3 Local Variables
Local values are like temporary variables in a module. Their application scope is in
the declared module. They are declared by the keyword locals. Local variables can
be helpful to reduce code redundancy and make code easy to modify in scenarios
where the same values or expressions are repeatedly defined in the configuration.
However, if local variables are overused, the actual values are hidden, making
code hard to read by future maintainers. Therefore, use local variables properly.

Declaring Local Variables

Local variables are declared using the keyword locals.

locals {
  service_name = "forum"
  owner        = "Community"
}

Expressions of local variables are not limited to character and numeric constants.
They can also use references and expression results of input variables, resource
attributes, or other local values.

locals {
}

locals {
  common_tags = {
    Service = local.service_name
    Owner   = local.owner
  }
}

Referencing Local Variables

After declaring a local variable, you can use local.<Variable name> to reference
it.

  ...
  tags = local.common_tags
}

3.5 Metadata

3.5.1 Instruction
Metadata refers to built-in meta-arguments supported by Terraform and can be
used in the provider, resource, and data blocks. This section describes the meta-
arguments supported by the resource block, including:

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 18



● depends_on: specifies the dependencies of a resource.
● count: creates multiple resources with the same configuration.
● for_each: creates multiple resources based on mappings and string sets.
● lifecycle: customizes the lifecycle of a resource.

3.5.2 depends_on
A Terraform configuration file can contain multiple resources.

By referencing the attribute values of other resources in a resource, Terraform can
automatically infer the dependencies of the resource. However, the dependencies
of some resources are invisible to Terraform. Therefore, depends_on is needed to
create explicit dependencies. You can use depends_on to change the creation or
execution sequence of resources so that the resources are processed after the
dependent resources.

The expression of depends_on is the address list of dependent resources.

3.5.3 count
By default, only one resource is configured for a resource block of Terraform.
When multiple same resources need to be created, configuring multiple
independent resource blocks is redundant and difficult to maintain. You can use
the count or for_each arguments to manage multiple identical resources in the
same resource block. A given resource block cannot use both count and for_each.
Example:

Three identical EVS disks are created based on the preceding configurations. In
many cases, the provider requires that some arguments for creating resources be
unique. You can use the count.index attribute (an index value starting from 0) to
distinguish the arguments.

}

Two VPCs (myvpc_0 and myvpc_1) with the same CIDR value are created based
on the preceding configuration. To modify the CIDR value, you can declare a string
list to store the CIDR values of different VPCs, and then use count.index to access
the list elements.

variable "name_list" {
  type    = list(string)
  default = ["vpc_demo1", "vpc_demo2"]
}
variable "cidr_list" {
  type    = list(string)
  default = ["192.168.0.0/16", "172.16.0.0/16"]
}

  count = 2
  name  = var.name_list[count.index]
  cidr  = var.cidr_list[count.index]
}

An index is required to access a resource created using count. The format is
<Resource type>.<Name>[Index].

> huaweicloud_vpc.vpcs[0]

# ID for accessing the first VPC
> huaweicloud_vpc.vpcs[0].id

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 19



# ID for accessing all VPCs
> huaweicloud_vpc.vpcs[*].id

3.5.4 for_each
The function of for_each is similar to that of count. for_each uses key-value pairs
or string sets to quickly fill values in corresponding attributes. This optimizes the
script structure and helps understand the relationship between multiple instances.

When using the mapping type expression, you can use each.key and each.value
to access the key and value of the mapping. For example, to create a VPC, you can
use the key-value pair in for_each to flexibly configure the VPC name and CIDR.

  for_each = {
    vpc_demo1 = "192.168.0.0/16"
    vpc_demo2 = "172.16.0.0/16"
}

  name = each.key
  cidr = each.value
}

When a string set is used, each.key is equivalent to each.value and generally
each.key is used. In addition, you can use the toset() function to convert the
defined list type.

  for_each = toset(["secgroup_demo1", "secgroup_demo2"])
  name     = each.key
}

# Use variables to indicate for _each.
variable "secgroup_name" {
  type = set(string)
}
  for_each = var.secgroup_name
  name     = each.key
}

A key is required to access a resource created using for_each. The format is
<Resource type>.<Name>[Key].

# Access vpc_demo1.
# ID for accessing vpc_demo1

Both count and for_each can be used to create multiple resources. You are
advised to select either of them based on the following rules:

1. If the arguments of a resource instance are completely or mostly the same, you
are advised to use count.

2. If some arguments of a resource need to use distinct values that cannot be
directly derived from an integer, for_each is recommended.

3.5.5 provider
In Terraform, you can use provider blocks to create multiple configurations,
among which, one block is the default configuration, and other blocks are labeled
as non-default configurations using alias. You can use the meta-argument
provider in a resource to select a non-default provider block. For example, to
manage resources in different regions, you need to declare multiple provider
blocks.

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 20



provider "huaweicloud" {
  region = "cn-north-1"
  ...
}

provider "huaweicloud" {
  alias  = "guangzhou"
  region = "cn-south-1"
  ...
}

In the example, Huawei Cloud providers in Beijing and Guangzhou are declared,
and the provider in Guangzhou is labeled with an alias. You can use the meta-
argument provider in a resource to select a non-default provider block in the
format of <Provider name>.<Alias>.

resource "huaweicloud_networking_secgroup" "mysecgroup" {
# Use the name and alias of the non-default provider block.
  provider = huaweicloud.guangzhou
  ...
}

Huawei Cloud providers allow you to specify the region argument in a resource to
create resources in different regions. Compared with labeling providers with
aliases, this mode is more flexible and simple.

provider "huaweicloud" {
  region = "cn-north-1"
  ...
}

resource "huaweicloud_vpc" "example" {
  region = "cn-south-1"
  name   = "terraform_vpc"
  cidr   = "192.168.0.0/16"
}

3.5.6 lifecycle
Resource instances have three phases: creation, update, and destruction. The
lifecycle of a resource instance involves two or three of the phases. The meta-
argument lifecycle can be used to modify the lifecycle of a resource instance and
includes the following arguments:

● create_before_destroy
By default, when you need to change a resource argument that cannot be
updated, Terraform destroys the existing instance and then uses the newly
configured arguments to create a new object for replacement. When you set
the create_before_destroy argument to true, Terraform creates a new
instance before destroying the existing instance. This argument applies to
scenarios where service continuity needs to be ensured. Ensure in advance
that each resource instance has a unique name and other constraints are met
so that old and new instances can co-exist.
lifecycle {
  create_before_destroy = true
}

● prevent_destroy
When prevent_destroy is set to true, Terraform blocks the deletion of the
resource and returns an error. This meta-argument can be used as a security
measure to prevent high-cost instances, such as database instances, from

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 21



being recreated due to unexpected operations. To delete the resource, you
need to delete the configuration and then perform the destroy operation.
lifecycle {
  prevent_destroy = true
}

● ignore_changes
By default, the Terraform plan/apply operation detects the differences
between the cloud resource attributes and the local resource blocks. If they
are inconsistent, the update or rebuild operation is invoked to match the
configuration. You can use ignore_changes specify arguments that Terraform
should ignore when planning updates or rebuilds. The value of
ignore_changes can be the relative address list of the attributes. The Map
and List elements can be referenced using index notation, such as
tags["Name"] and list[0].
  ...
  lifecycle {
    ignore_changes = [
      name,
    ]
  }
}

In this case, Terraform ignores the modification of the name argument. In
addition to the list, you can also use the keyword all to ignore the updates of
all attributes.
  ...
  lifecycle {
    ignore_changes = all
  }
}

Resource Formation Service
Template Reference 3 Configuration Guide

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 22



4 Template Constraints and Limitations

Using RFS to deploy templates, there are several constraints listed as follows:

● The number of modules is limited to 25 and the module nesting depth is
limited to 3.

● The Provisioners, Backend Configuration and Cloud features are not
supported.

● The Module Sources feature is supported. However, you can only use Local
Modules.

● The HuaweiCloud Provider is supported with certain prohibited resources
which are listed as follows:
– huaweicloud_vod_watermark_template
– huaweicloud_compute_keypair
– huaweicloud_identity_access_key
– huaweicloud_images_image_v2
– huaweicloud_kps_keypair
– huaweicloud_obs_bucket_object
– huaweicloud_iotda_batchtask
– huaweicloud_cce_chart
– huaweicloud_iotda_batchtask_file
– huaweicloud_cse_microservice

● The following built-in functions are prohibited:
– abspath
– basename
– dirname
– file
– filebase64
– filebase64sha256
– filebase64sha512
– fileexists
– fileset

Resource Formation Service
Template Reference 4 Template Constraints and Limitations

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 23

https://www.terraform.io/docs/provisioners/index.html
https://registry.terraform.io/providers/huaweicloud/huaweicloud/latest/docs/guides/remote-state-backend
https://developer.hashicorp.com/terraform/cli/v1.5.x/cloud/settings#the-cloud-block
https://www.terraform.io/docs/modules/sources.html
https://registry.terraform.io/providers/huaweicloud/huaweicloud/latest
https://developer.hashicorp.com/terraform/language/functions/abspath
https://developer.hashicorp.com/terraform/language/functions/basename
https://developer.hashicorp.com/terraform/language/functions/dirname
https://www.terraform.io/docs/language/functions/file.html
https://www.terraform.io/docs/language/functions/filebase64.html
https://developer.hashicorp.com/terraform/language/functions/filebase64sha256
https://developer.hashicorp.com/terraform/language/functions/filebase64sha512
https://www.terraform.io/docs/language/functions/fileexists.html
https://www.terraform.io/docs/language/functions/fileset.html


– filemd5
– filesha1
– filesha256
– filesha512
– pathexpand
– templatefile

WARNING

The use of the nonsensitive method to output sensitive information is not
recommended. Random use of this method may result in sensitive
information being printed out in plaintext by the service when it should have
been hidden, leading to leakage of sensitive information.If output is necessary,
it is recommended to prioritize encoding before outputting (e.g.,
nonsensitive(sha256(var.sensitive_value)))

Resource Formation Service
Template Reference 4 Template Constraints and Limitations

Issue 01 (2025-02-10) Copyright © Huawei Technologies Co., Ltd. 24

https://developer.hashicorp.com/terraform/language/functions/filemd5
https://developer.hashicorp.com/terraform/language/functions/filesha1
https://developer.hashicorp.com/terraform/language/functions/filesha256
https://developer.hashicorp.com/terraform/language/functions/filesha512
https://developer.hashicorp.com/terraform/language/functions/pathexpand
https://www.terraform.io/docs/language/functions/templatefile.html

	Contents
	1 Templates
	2 Syntax
	2.1 Basic Syntax
	2.2 Style Conventions
	2.3 Expressions
	2.4 Common Functions

	3 Configuration Guide
	3.1 Provider
	3.2 Resources
	3.3 Data Source
	3.4 Variables
	3.4.1 Input Variables
	3.4.2 Output Variables
	3.4.3 Local Variables

	3.5 Metadata
	3.5.1 Instruction
	3.5.2 depends_on
	3.5.3 count
	3.5.4 for_each
	3.5.5 provider
	3.5.6 lifecycle


	4 Template Constraints and Limitations

